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1 Definitions

Definition 1.1. A super vector space is a Z2−graded vector space V = V0 ⊕ V1. Given a ∈ Vi, let the

parity be |a| = i, i ∈ Z2.

Given a super vector space V , let Π be the parity reversing functor where Π(V )i = Vi+1 for i ∈ Z2.

Definition 1.2. A Lie superalgebra is a super vector space g = g0 ⊕ g1 with a Z2−graded bilinear

operation [−,−] : g× g → g such that for all homogeneous elements a, b, c

(1) Skew-supersymmetry: [a, b] = −(−1)|a|·|b|[b, a]

(2) Super Jacobi identity: [a, [b, c]] = [[a, b], c] + (−1)|a|·|b|[b, [a, c]]

Remark. If g = g0 is completely even we recover the definition of a lie algebra.

Example 1. Let A be an associative superalgebra. Then (A, [−,−]s) is a Lie superalgebra where

[a, b]s = ab− (−1)|a||b|ba

Definition 1.3. A map f : g → h between lie superalgebras is a homomorphism if f is even and

f([a, b]) = [f(a), f(b)]

Example 2. Let g be a lie superalgebra, then End(g) is a lie superalgebra by Example 1. The adjoint

representation of g is the map ad : g → End(g)

ada(b) := [a, b]

which is a homomorphism by the super jacobi identity.

Remark. Since [−,−] is Z2−graded we see that ad|g0 : g0 → End(g1), aka g1 is a g0 module.

Example 3 (general linear lie superalgebra). Let V = V0⊕V1
∼= Cm|n (where m = dimV0, n = dimV1)

be a super vector space. Then gl(m|n) := (End(Cm|n), [−,−]) from Example 1. Fixing a basis, we see

that gl(m|n) consists of block matrices of the form

(
A B

C D

)m︷︸︸︷ n︷︸︸︷{
m{
n

(1)

Explicitly,

gl(m|n)0 =
(
A 0

0 D

)m︷︸︸︷ n︷︸︸︷{
m{
n

, gl(m|n)1 =
(
0 B

C 0

)m︷︸︸︷ n︷︸︸︷{
m{
n

We then have that gl(m|n)0 ∼= gl(m)⊕gl(n) while gl(m|n)1 ∼=
(
Cm ⊗ Cn∗

)
⊕
(
Cm∗ ⊗ Cn

)
as a gl(m|n)0

module.
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Example 4 (special linear lie superalgebra). Given an element g ∈ gl(m|n) in the form Eq. (1), define

the supertrace as

str(g) = tr(A)− tr(D)

Facts:

(1) str([g, h]s) = 0 ∀g, h ∈ gl(m|n).

(2) The subspace

sl(m|n) := {g ∈ gl(m|n)| str(g) = 0}

is a lie subsuperalgebra of gl(m|n).

(3) [gl(m|n), gl(m|n)] = sl(m|n).

Definition 1.4. A bilinear form ⟨−,−⟩ on a super vector space V = V0 ⊕ V1 is supersymmetric if

⟨v, w⟩ = (−1)|v||w| ⟨w, v⟩

It is said to be even if ⟨V0, V1⟩ = 0.

Lemma 1.5. gl(m|n) and sl(m|n) (Except (m,n) = (1, 1), (2, 1)) are basic lie superalgebras meaning

that they admit non-degenerate even supersymmetric bilinear forms.

Proof. ⟨a, b⟩ = str(ab) does the trick. Call this the supertrace form. ■

Definition 1.6. Given a basic lie superalgebra g, a cartan subalgebra h is defined to be a Cartan

subalgebra of the even subalgebra g0 and the Weyl group of g is defined to be the Weyl group of g0.

Example 5. The Cartan subalgebra for gl(m|n) will be the Cartan subalgebra for gl(m) ⊕ gl(n) aka

diagonal matrices in gl(m+ n). Namely let I(m|n) =
{
1, . . . ,m, 1, . . . , n

}
with total order

1 < . . . < m < 0 < 1 < . . . < n

Then h =
⊕

i∈I(m|n)

CEii. Note

⟨Eii, Ejj⟩ =


1 if 1 ≤ i = j ≤ m

−1 if 1 ≤ i = j ≤ n

0 if i ̸= j

Definition 1.7. Let h be a Cartan subalgebra of g, which is basic. For α ∈ h∗, let

gα = {g ∈ g | [h, g] = α(h)g, ∀h ∈ h}

Then the root system for g is defined to be

Φ = {α ∈ h∗|gα ̸= 0, α ̸= 0}

And define the even and odd roots to be

Φ0 := {α ∈ Φ|gα ∩ g0 ̸= 0} Φ1 := {α ∈ Φ|gα ∩ g1 ̸= 0}

Theorem 1.8. Let g be a basic lie superalgebra with a Cartan subalgebra h. Then
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(1) We have a root space decomposition

g = h⊕
⊕
α∈Φ

gα

(2) ⟨−,−⟩ |h is non-degenerate and W−invariant.

(3) dim gα = 1 for α ∈ Φ (this relies on non-degeneracy)1.

(4) Φ,Φ0,Φ1 are each invariant under the action of W on h∗.

Example 6 (Root system for gl(m|n)/sl(m|n)). Because the cartan for gl(m|n) is contained in the

even part, the super lie bracket reduces to the usual lie bracket for the action of the cartan on gl(m|n).
Hence, the roots of gl(m|n) are the same as the roots of gl(m+n) as a set but we have now partitioned

them into even and odd roots. Specifically, let {δi, ϵj}i,j ⊂ h∗ be the dual basis to {Eii, Ejj} under

⟨−,−⟩ The root system for gl(m|n)/sl(m|n) is given by

Φ0 = {ϵi − ϵj |i ̸= j ∈ I(m|n), i, j > 0 or i, j < 0}
Φ1 = {δi − ϵj , ϵk − δℓ|i, j ∈ I(m|n), 1 ≤ i, ℓ ≤ m, 1 ≤ j, k ≤ n}

[Draw on block matrices] Because h ∼= h∗ under the map h 7→ ⟨h,−⟩ we now have a non-degenerate

bilinear form (−,−) on h∗. Using the results in Example 5 we see that

(δi, δj) = δij , (ϵi, ϵj) = −δij , (ϵk, δℓ) = 0

Definition 1.9. A root α ∈ Φ is called isotropic if (α, α) = 02. Let Φ1 denote the set of isotropic odd

roots.

Isotropic roots are necessarily odd, as even roots are roots of g0 a regular lie algebra. Assuming

g0 = gss ⊕ a is reductive, where gss is the semisimple part and a is the abelian part. But since a is

abelian it’s contained in the 0 root space for the Cartan. Roots are nonzero and thus the roots of a

reductive lie algebra coincide with the roots of the semisimple part gss which is a direct sum of simple

lie algberas. For simple lie algebras any symmetric invariant form (in particular the supertrace form

restricted to g0) is a nonzero scalar multiple of the Killing form. But for lie algebras the Killing form

is positive definite on the Q−span of Φ and thus (α, α) > 0 for even roots.

Example 7. In gl(1|1) consider the odd root δ1 − ϵ1. We calculate that

(δ1 − ϵ1, δ1 − ϵ1) = (δ1, δ1) + (ϵ1, ϵ1) = 0

Remark. Because (α, α) = 0 for some roots, drawing roots for lie superalgebras is slightly dangerous

as angles and size no longer tell us any algebraic information. However for gl(m|n) we will draw the

roots as if they were roots of gl(m+ n) and indicate which roots are isotropic, etc.

2 Positive Roots

Definition 2.1. For g a basic lie algebra define

Φ+(H) = {α ∈ Φ | ⟨H,α⟩K > 0}

where ⟨−,−⟩K is the usual killing form on g and H is a hyperplane not containing any of the roots. Let

∆(H) be the set of simple roots of Φ+(H).
1Like affine lie algebras, imaginary root spaces need not be 1-dimensional. Root spaces of q(n) are (1|1)− dimensional

for instance.
2This also occurs for imaginary roots for affine lie algebras.
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Warning. The choice of H matters now as different choices may not be conjugate to each other under

the action of the Weyl group. Consider gl(2|1). ϵ1 0 0

0 ϵ2 0

0 0 ϵ3


We then see that we have one even root ϵ1 − ϵ2 and two odd isotropic roots ϵ2 − ϵ3, ϵ1 − ϵ3. See below

for two different choices of positive roots.

[The black simple root in left diagram is the even root, draw even roots with ⃝ draw odd isotropic

roots with ⊗, and non-isotropic odd roots with •]. The corresponding decorated Dynkin diagrams will

be

As the Weyl sends even roots to even roots and odd roots to odd roots, the two choices of simple roots

above are not conjugate to each other under W .

Example 8 (Standard Simple Roots for gl(m|n)). Using the notation from Example 6, the standard

simple roots(fundamental system) for gl(m|n) is given by

We note that the (super)lengths of the roots after the isotropic odd roots are −2.

Example 9 (Nonstandard Simple Roots). If n = m, then gl(n|n) has the following fundamental system

consisting of all isotropic odd roots

Given H, define

n+(H) =
⊕

α∈Φ+(H)

gα, n−(H) =
⊕

α∈Φ−(H)

gα

b(H) = h⊕ n+(H) is called a Borel subalgebra of g corresponding to H. b(H) is solvable, however,
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Warning. Unlike in the usual case, Borel subalgebras for lie superalgebras need not be MAXIMAL

solvable subalgebras. First, we have seen that sl(1|1) only has one root, and by Example 7 it is

isotropic. In fact the converse is true, aka

Lemma 2.2. Let α be an isotropic odd root. Let eα ∈ gα. Then

Ceα ⊕ Ce−α ⊕ C[eα, e−α] ∼= sl(1|1)

Now, sl(1|1) consists of matrices of the form (
a b

c a

)
and this will actually make sl(1|1) solvable (a instead of −a in the bottom right corner will make things

in the bottom left corner cancel out)! Thus, given a Borel subalgebra b(H) and an isotropic odd root

α, the subalgebra b(H)⊕ g−α is solvable3 so b(H) is not maximal solvable.

3 Odd Reflections

Lemma 3.1 (Serganova). Let g be a basic Lie superalgebra and let ∆ be a fundamental system for Φ+.

Let α be an odd isotropic root. Define the odd reflection rα acting on ∆ by

rα(β) =


β + α if (β, α) ̸= 0

β if (β, α) = 0, β ̸= α

−α if β = α

Then ∆α := rα(∆) is a fundamental system for the set of positive roots Φ+
α := {−α} ∪ Φ+ \ {α}.

Remark. Because (α, α) = 0, rα doesn’t come from usual formula for reflections about hyperplane

perpendicular to α. In fact, rα need not extend to a linear map h∗ → h∗!

Example 10. In gl(1|2) starting with the standard fundamental system, we can apply odd reflections

to get the other 2 as seen below

Let us compute how to go from the standard fundamental system to the one in the middle. Let

α = δ1 − ϵ1. Then according to the formula for Πα, we need to compute the bilinear form of α with all

roots of Π

� We compute that (δ1 − ϵ1, ϵ1 − ϵ2) = − (ϵ1, ϵ1) = 1.

� Thus we end up with the root ϵ1 − ϵ2 + δ1 − ϵ1 = δ1 − ϵ2.

� α 7→ −α = ϵ1 − δ1 is the other simple root in Πα.

Remark. Note that odd reflections are all “simply laced” reflections. The formula for the odd reflection

is the same exactly when the simple root α has at most one line with other roots β in the Dynkin diagram.

Definition 3.2. Given a Borel subalgebra b and an isotropic odd root α, define

bα = h⊕
⊕
β∈Φ+

α

gβ

3The sum of two solvable subalgebras is solvable.
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4 Misc

� Levi’s theorem isn’t true.

� Lie’s theorem isn’t true.

� Semisimple lie superalgebras are not direct sum of simple lie superalgebras.
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